Publications

Institute of Navigation

list of publications

Publications since 2018

  1. 2023

    1. Gutsche, K., Hobiger, T., & Winkler, S. (2023). Addressing Inaccurate Phase Center Offsets in Precise Orbit Determination for Agile Satellite Missions. Proceedings of the 36th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2023), 3205–3216. https://doi.org/10.33012/2023.19258
    2. Shengping He, Thomas Hobiger, & Doris Becker. (2023). Modelling asymmetric troposphere delays by means of B-splines.
    3. Stucke, M. B., Hobiger, T., Möller, G., Gutsche, K., & Winkler, S. (2023). Multi-Receiver Precise Baseline Determination: Coupled Baseline an Attitude Estimation with a Low-Cost Off-The-Shelf GNSS Receiver: Vol. Proceedings of the 36th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2023) (Pp. 3082–3095; Issue pp. 3082-3095). https://doi.org/10.33012/2023.19469
    4. Wang, R., Hobiger, T., Marut, G., & Hadas, T. (2023, May). Improving GNSS meteorology by fusing measurements of multi-receiver sites on the observation level. EGU General Assembly 2023, Vienna, Austria. https://doi.org/10.5194/egusphere-egu23-3364
    5. Wang, R., Becker, D., & Hobiger, T. (2023). Interval bounding analysis for precise point positioning. European Navigation Conference (ENC) 2023, ESA/ESTEC in Noordwijk, the Netherlands.
    6. Wang, R., Becker, D., & Hobiger, T. (2023). Stochastic modeling with robust Kalman filter for real-time kinematic GPS single-frequency positioning. GPS Solutions, 27(3), Article 3. https://doi.org/10.1007/s10291-023-01479-5
  2. 2022

    1. Gutsche, K., Hobiger, T., Winkler, S., & Stucke, B. (2022). PODCAST: Precise Orbit Determination Software for LEO Satellites. Proceedings of the 35th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2022), 3707–3719.
    2. Shengping He, Doris Becker, & Thomas Hobiger. (2022). The impact of GNSS multipath errors on ZTD estimates based on PPP. https://doi.org/10.5281/zenodo.7326314
    3. Topp, T., & Hobiger, T. (2022). Flow-Based Programming for Real-Time Multi-Sensor Data Fusion. Proceedings of the 35th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2022), 2492–2502.
  3. 2021

    1. Hadas, T., Marut, G., Kaplon, J., & Rohm, W. (2021). Determination of water vapor content using low-cost dual-frequency GNSS receivers. Scientific Assembly of the International Association of Geodesy (IAG), Beijing, China. https://youtu.be/qbbRnNPZHLo
    2. Hadas, T., Wielgocka, N., Kaczmarek, A., & Marut, G. (2021). Precise positioning using low-cost dual-frequency GNSS receivers. Scientific Assembly of the International Association of Geodesy (IAG), Beijing, China. https://youtu.be/WHm-kuTn6MU
    3. Hadas, T., Marut, G., Kaplon, J., & Rohm, W. (2021). Real-time and near real-time ZTD from a local network of low-cost dual-frequency GNSS receivers. https://youtu.be/3cjWx0ML48I
    4. Hadas, T., Bender, M., Marut, G., & Hobiger, T. (2021). Real-Time GNSS Meteoroogy in Europe - Hurricane Lorenzo Case Study. International Geoscience and Remote Sensing Symposium, Brussels, Belgium. https://youtu.be/G8byg-CLv-s
    5. Hadaś, T., Wielgocka, N., Kaczmarek, A., & Marut, G. (2021). Precise positioning using low-cost dual-frequency GNSS receivers. Scientific Assembly of the International Association of Geodesy (IAG), Beijing, China. https://youtu.be/WHm-kuTn6MU
    6. Wielgocka, N., Hadas, T., Kaczmarek, A., & Marut, G. (2021). Feasibility of Using Low-Cost Dual-Frequency GNSS Receivers for Land Surveying. Sensors, 21(6), Article 6. https://doi.org/10.3390/s21061956
  4. 2020

    1. Geremia-Nievinski, F., Hobiger, T., Haas, R., Liu, W., Strandberg, J., Tabibi, S., Vey, S., Wickert, J., & Williams, S. (2020). SNR-based GNSS reflectometry for coastal sea-level altimetry: results from the first IAG inter-comparison campaign. Journal of Geodesy, 94(8), Article 8. https://doi.org/10.1007/s00190-020-01387-3
    2. Hadas, T., & Hobiger, T. (2020). Benefits of Using Galileo for Real-Time GNSS Meteorology. IEEE Geoscience and Remote Sensing Letters, 1–5. https://doi.org/10.1109/LGRS.2020.3007138
    3. Hadas, T., & Hobiger, T. (2020). Benefits of Using Galileo for Real-Time GNSS Meteorology. IEEE Geoscience and Remote Sensing Letters. https://doi.org/10.1109/LGRS.2020.3007138
    4. Hadas, T., Hobiger, T., & Hordyniec, P. (2020). Considering different recent advancements in GNSS on real-time zenith troposphere estimates. GPS Solutions, 24(4), Article 4. https://doi.org/10.1007/s10291-020-01014-w
    5. Hadas, T., & Hobiger, T. (2020). Contribution of Galileo to real-time GNSS meteorology.
    6. Hadas, T., & Hobiger, T. (2020). Contribution of Galileo to real-time GNSS meteorology. International Workshop on Improving GNSS and SAR Tropospheric Products for Meteorology, Luxembourg.
    7. Klopotek, G., Hobiger, T., Haas, R., & Otsubo, T. (2020). Geodetic VLBI for precise orbit determination of Earth satellites: a simulation study. Journal of Geodesy, 94(56), Article 56. https://doi.org/10.1007/s00190-020-01381-9
    8. Purnell, D. J., Gomez, N., Chan, N., Strandberg, J., Holland, D., & Hobiger, T. (2020). Quantifying the Uncertainty in Ground-Based GNSS-Reflectometry Sea Level Measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1–6. https://doi.org/10.1109/JSTARS.2020.3010413
    9. Shengping He, Clemens Sonnleitner, & Thomas Hobiger. (2020). Development of a software-defined ADS-B receiver.
  5. 2019

    1. Hadas, T., & Hobiger, T. (2019). GNSS meteorology: state of the art, challenges and perspectives. Second Summer School of DAAD Thematic Network, University of Stuttgart, Stuttgart, Germany.
    2. Hadas, T., Kazmierski, K., & Sosnica, K. (2019). Performance of Galileo-only Positioning using the current Galileo constellation. 7th International Colloquium on Scientific and Fundamental Aspects of GNSS, ETH Zürich - Hönggerberg Campus. https://atpi.eventsair.com/QuickEventWebsitePortal/19a07---7th-gnss-colloquium/7th-international-colloquium/Agenda/AgendaItemDetail?id=ff530542-1a79-4cf8-8692-58e2feaeab7e
    3. Hadas, T., & Hobiger, T. (2019). Real-time GNSS meteorology: state of the art and challenges. EMS Annual Meeting 2019, Technical University of Denmark (DTU). https://meetingorganizer.copernicus.org/EMS2019/EMS2019-902.pdf
    4. Hadaś, T., Bryłka, P., Tondaś, D., & Kapłon, J. (2019). Low-cost receivers for GNSS meteorology. GNSS Meteorology Workshop 2019, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland. https://www.upwr.edu.pl/ogloszenia/49872/gnss_meteorology_workshop_2019.html
    5. Klopotek, G., Hobiger, T., Haas, R., Jaron, F., La Porta, L., Nothnagel, A., Zhang, Z., Han, S., Neidhardt, A., & Plötz, C. (2019). Position determination of the Chang’e 3 lander with geodetic VLBI. Earth, Planets and Space, 71(1), Article 1. https://doi.org/10.1186/s40623-019-1001-2
    6. Lambertus, T., & Hobiger, T. (2019). Single point positioning by means of particle filtering on the GPU. In 2019 European Navigation Conference (ENC). European Navigation Conference (ENC), Warsaw, Poland. IEEE. https://doi.org/10.1109/EURONAV.2019.8714148
    7. Strandberg, J., Hobiger, T., & Haas, R. (2019). Real-time sea-level monitoring using Kalman filtering of GNSS-R data. GPS Solutions, 23(3), Article 3. https://doi.org/10.1007/s10291-019-0851-1
    8. Vijayaraghavan, A., Wehr, A., & Hobiger, T. (2019). Development of an Indoor Microwave Positioning and Data Transmission System. InterGEO 2019. http://www.nav.uni-stuttgart.de/dokumente/forschung_publikation/2019/Vijayaraghavan-indoor_mikrowave_pos_6.pdf
    9. Wang, R., & Hobiger, T. (2019). PyGACT - a Python toolkit for determination of relative GNSS antenna phase center variations. InterGEO 2019, Stuttgart. https://www.kongress.intergeo.de/de/Kongressprogramm.html?detail=1139857
  6. 2017

    1. Mélen, G., Freiwang, P., Luhn, J., Vogl, T., Rau, M., Sonnleitner, C., Rosenfeld, W., & Weinfurter, H. (2017). Handheld Quantum Key Distribution. Quantum Information and Measurement (QIM) 2017, QT6A.57. https://doi.org/10.1364/QIM.2017.QT6A.57
  7. 2015

    1. Manzi, A., Simon, T., Sonnleitner, C., Döblinger, M., Wyrwich, R., Stern, O., Stolarczyk, J. K., & Feldmann, J. (2015). Light-Induced Cation Exchange for Copper Sulfide Based CO2 Reduction. Journal of the American Chemical Society, 137(44), Article 44. https://doi.org/10.1021/jacs.5b06778
To the top of the page