Publications

Institute of Navigation

list of publications

Publications since 2018

  1. 2021

    1. Hadas, T., Marut, G., Kaplon, J., & Rohm, W. (2021). Determination of water vapor content using low-cost dual-frequency GNSS receivers. Scientific Assembly of the International Association of Geodesy (IAG), Beijing, China. https://youtu.be/qbbRnNPZHLo
    2. Hadas, T., Wielgocka, N., Kaczmarek, A., & Marut, G. (2021). Precise positioning using low-cost dual-frequency GNSS receivers. Scientific Assembly of the International Association of Geodesy (IAG), Beijing, China. https://youtu.be/WHm-kuTn6MU
    3. Hadas, T., Marut, G., Kaplon, J., & Rohm, W. (2021). Real-time and near real-time ZTD from a local network of low-cost dual-frequency GNSS receivers. https://youtu.be/3cjWx0ML48I
    4. Hadas, T., Bender, M., Marut, G., & Hobiger, T. (2021). Real-Time GNSS Meteoroogy in Europe - Hurricane Lorenzo Case Study. International Geoscience and Remote Sensing Symposium, Brussels, Belgium. https://youtu.be/G8byg-CLv-s
    5. Hadaś, T., Wielgocka, N., Kaczmarek, A., & Marut, G. (2021). Precise positioning using low-cost dual-frequency GNSS receivers. Scientific Assembly of the International Association of Geodesy (IAG), Beijing, China. https://youtu.be/WHm-kuTn6MU
    6. Wielgocka, N., Hadas, T., Kaczmarek, A., & Marut, G. (2021). Feasibility of Using Low-Cost Dual-Frequency GNSS Receivers for Land Surveying. Sensors, 21(6), 1956. https://doi.org/10.3390/s21061956
  2. 2020

    1. Geremia-Nievinski, F., Hobiger, T., Haas, R., Liu, W., Strandberg, J., Tabibi, S., Vey, S., Wickert, J., & Williams, S. (2020). SNR-based GNSS reflectometry for coastal sea-level altimetry: results from the first IAG inter-comparison campaign. Journal of Geodesy, 94(8), 70. https://doi.org/10.1007/s00190-020-01387-3
    2. Hadas, T., & Hobiger, T. (2020). Benefits of Using Galileo for Real-Time GNSS Meteorology. IEEE Geoscience and Remote Sensing Letters, 1–5. https://doi.org/10.1109/LGRS.2020.3007138
    3. Hadas, T., & Hobiger, T. (2020). Benefits of Using Galileo for Real-Time GNSS Meteorology. IEEE Geoscience and Remote Sensing Letters. https://doi.org/10.1109/LGRS.2020.3007138
    4. Hadas, T., Hobiger, T., & Hordyniec, P. (2020). Considering different recent advancements in GNSS on real-time zenith troposphere estimates. GPS Solutions, 24(4), 99. https://doi.org/10.1007/s10291-020-01014-w
    5. Hadas, T., & Hobiger, T. (2020). Contribution of Galileo to real-time GNSS meteorology. International Workshop on Improving GNSS and SAR Tropospheric Products for Meteorology, Luxembourg.
    6. Hadas, T., & Hobiger, T. (2020). Contribution of Galileo to real-time GNSS meteorology.
    7. Klopotek, G., Hobiger, T., Haas, R., & Otsubo, T. (2020). Geodetic VLBI for precise orbit determination of Earth satellites: a simulation study. Journal of Geodesy, 94(56), 1–26. https://doi.org/10.1007/s00190-020-01381-9
    8. Purnell, D. J., Gomez, N., Chan, N., Strandberg, J., Holland, D., & Hobiger, T. (2020). Quantifying the Uncertainty in Ground-Based GNSS-Reflectometry Sea Level Measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1–6. https://doi.org/10.1109/JSTARS.2020.3010413
  3. 2019

    1. Hadas, T., & Hobiger, T. (2019). GNSS meteorology: state of the art, challenges and perspectives. Second Summer School of DAAD Thematic Network, University of Stuttgart, Stuttgart, Germany.
    2. Hadas, T., Kazmierski, K., & Sosnica, K. (2019). Performance of Galileo-only Positioning using the current Galileo constellation. 7th International Colloquium on Scientific and Fundamental Aspects of GNSS, ETH Zürich - Hönggerberg Campus. https://atpi.eventsair.com/QuickEventWebsitePortal/19a07---7th-gnss-colloquium/7th-international-colloquium/Agenda/AgendaItemDetail?id=ff530542-1a79-4cf8-8692-58e2feaeab7e
    3. Hadas, T., & Hobiger, T. (2019). Real-time GNSS meteorology: state of the art and challenges. EMS Annual Meeting 2019, Technical University of Denmark (DTU). https://meetingorganizer.copernicus.org/EMS2019/EMS2019-902.pdf
    4. Hadaś, T., Bryłka, P., Tondaś, D., & Kapłon, J. (2019). Low-cost receivers for GNSS meteorology. GNSS Meteorology Workshop 2019, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland. https://www.upwr.edu.pl/ogloszenia/49872/gnss_meteorology_workshop_2019.html
    5. Klopotek, G., Hobiger, T., Haas, R., Jaron, F., La Porta, L., Nothnagel, A., Zhang, Z., Han, S., Neidhardt, A., & Plötz, C. (2019). Position determination of the Chang’e 3 lander with geodetic VLBI. Earth, Planets and Space, 71(1), 23. https://doi.org/10.1186/s40623-019-1001-2
    6. Lambertus, T., & Hobiger, T. (2019). Single point positioning by means of particle filtering on the GPU. In 2019 European Navigation Conference (ENC). European Navigation Conference (ENC), Warsaw, Poland. IEEE. https://doi.org/10.1109/EURONAV.2019.8714148
    7. Strandberg, J., Hobiger, T., & Haas, R. (2019). Real-time sea-level monitoring using Kalman filtering of GNSS-R data. GPS Solutions, 23(3), 61. https://doi.org/10.1007/s10291-019-0851-1
    8. Vijayaraghavan, A., Wehr, A., & Hobiger, T. (2019). Development of an Indoor Microwave Positioning and Data Transmission System. InterGEO 2019. http://www.nav.uni-stuttgart.de/dokumente/forschung_publikation/2019/Vijayaraghavan-indoor_mikrowave_pos_6.pdf
  4. 2017

    1. Mélen, G., Freiwang, P., Luhn, J., Vogl, T., Rau, M., Sonnleitner, C., Rosenfeld, W., & Weinfurter, H. (2017). Handheld Quantum Key Distribution. Quantum Information and Measurement (QIM) 2017, QT6A.57. https://doi.org/10.1364/QIM.2017.QT6A.57
  5. 2015

    1. Manzi, A., Simon, T., Sonnleitner, C., Döblinger, M., Wyrwich, R., Stern, O., Stolarczyk, J. K., & Feldmann, J. (2015). Light-Induced Cation Exchange for Copper Sulfide Based CO2 Reduction. Journal of the American Chemical Society, 137(44), 14007–14010. https://doi.org/10.1021/jacs.5b06778
To the top of the page